

Application of R1224yd(Z) as R245fa Alternative for High Temperature Heat Pump

Takenobu KAIDA

Central Research Institute of Electric Power Industry (CRIEPI)

Masato FUKUSHIMA

AGC Inc.

Koichiro IIZUKA

Kobe Steel, Ltd. (KOBELCO)

Background

- For significant CO₂ emissions reduction
 - Lower carbonization of power generation
 - Electrification
 - Higher efficient electricity usage
- High temperature heat pump (HTHP)
 - One of the key technologies for expanding electrification of heat usage with relatively high energy efficiency
- Low GWP refrigerant
 - R245fa (GWP = 858) used for HTHPs around
 120°C → Necessary for lower GWP
 - R245fa alternative:
 R1234ze(Z), R1233zd(E), R1224yd(Z), ...

Source: MRI, Survey report on heat demand and supply equipment, commissioned by enecho, 2018.

Outline

- Objective
 - Assessing the suitability of R1224yd(Z) as R245fa alternative for high temperature HP
- Contents
 - Performance evaluation of R1224yd(Z) compared to R245fa by drop-in test
 - Compatibility with refrigeration oil, O-ring and motor insulation material

©CRIEPI CONTROLL CONTROL CONTROL CONTROL CONTROLL CONTROL CONTR

Characteristics of R1224yd(Z)

Basic Properties

- Similar thermodynamic properties with R245fa
- Low-toxicity and non-flammability
- Almost zero ODP
- Very low GWP (< 1)

	R1224yd(Z)	R245fa
Normal Boiling Point [°C]	14.62	15.05
Critical Temperature [°C]	155.54	153.86
Critical Pressure [MPa]	3.34	3.65
OEL [ppm]	1,000	300
Flammability Range [%]	None	None
ASHRAE Safety Classification	A1	B1
ODP	0.00023*	0
GWP (IPCC AR5)	0.88*	858

^{*} K. Tokuhashi et al., Journal of Physical Chemistry A 122, 2018.

R1224yd(Z) is safe and environmental-friendly.

©CRIEPI .

Benefit for Heat Pump Users

- Easy handling of R1224yd(Z)
 - Environmental-friendly (very low GWP) → Not subject to Revised F-gas Act
 - $lue{}$ Relatively safe (A1) \rightarrow Getting preferential treatment in **High Pressure Gas Act**

	Revised F-gas Act (Act on Rational Use and Proper Management of Fluorocarbons)	High Pressure Gas Act
	For environmental protection	For safety
R245fa	 Need to manage it properly in order not to leak it Need to count leaked weight (= recharged weight) Need to report leakage amount to the government in the case of large amount 	 Need to get permission from the government before operation Need to maintain it for safety Need to perform periodic inspections
R1224yd(Z)	Not subject to Act	 Getting preferential treatment, which depends on 'legal refrigerating capacity' (ex. Applying to SGH120: Not subject to Act)

Thermodynamic Property Diagrams

- Saturated vapor pressure
 - Very close to R245fa at low temperature but somewhat lower at high temperature
- Latent heat
 - Somewhat smaller than R245fa (13% smaller at 120°C)
- Saturated vapor line
 - Slightly positive slope (dT/ds > 0) like R245fa except near the criticl point

Predicted Thermodynamic Performance

- R1224yd(Z) relative to R245fa
 - P_d/P_s 0.95
 - COP 1.00
 - 0.92 VHC

180 --- R1224yd(Z) 160 --- R245fa 140 $T_{\rm cnd} = 120^{\circ} \rm C$ 120 $\Delta T_{\rm sc} = 10K$ *T* [°C] 100 80

Prediction: Similar COP but 8% smaller heating capacity

Performance Evaluation

Test Machine

■ SGH165

- Developed by KOBELCO and Japanese electric utilities, and commercialized in 2011
- Able to supply saturated steam,
 as recovering the warm effluent in a plant
- Composed of 3 units
- HEM-HR115
 - Heat pump unit of SGH165
 - Heat source 70°C ---> Heat sink 115°C
 - Mixture of R245fa and R134a

The test was performed with each pure refrigerant of R245fa and R1224yd(Z).

SGH165

R245fa+R134a COP = 2.5 Heating Capacity = 660 kW (0.9 ton/h) Steam = 165°C, Heat source = 70°C

Schematic Diagram and Measure Points

- Measure points
 - Each of the inlet-outlet water temperatures and flow rates
 - Power consumption
 - Each of refrigerant pressures and temperatures as reference

$$Q_h = \rho_{h1} V_h (T_{h2} - T_{h1})$$

$$COP_h = \frac{Q_h}{W}$$

Test Method

- Test procedure
 - Compressor rotational speed fixed at 100% (= 3,600 rpm)
 - Controlling discharge superheat by adjusting main expansion valve
 - Comparison of R1224yd(Z) and R245fa under the same discharge superheat
- Test conditions
 - 3 cases
 - Temperature differences fixed at 5 K ($\Delta T_c = T_{c1} T_{c2} = 5$ K, $\Delta T_h = T_{h2} T_{h1} = 5$ K)

	<i>T</i> _{c1} [°C]	T _{h2} [°C]	∆ T _{sh,d} [K]	Economizer
Case 1	70	115	15	Open
Case 2	70	95	25	Closed
Case 3	50	95	27	Closed

Test Results

- COP
 - 2-12% higher than R245fa (= better than prediction)
- Heating capacity
 - Case 1: 8% lower than R245fa (= similar to prediction)
 - Case 3: 3% higher than R245fa (= better than prediction)

Comparison of Diagrams in Actual Performance (Case 3)

- Temperature lift (= $T_{cnd} T_{evp}$) decreases from 60.7 K to 57.9 K
- Pressure ratio (= P_d/P_s) decreases from 5.3 to 4.6
- Heating effect (= $h_{r2} h_{r3}$) decreases from 183 kJ/kg to 153 kJ/kg
- Mass flow rate increases from 1.26 kg/s to 1.55 kg/s

(improving *COP*)

(improving *COP*)

(as predicted)

(improving *Q*)

Reasons for Improving Performance

Improvement of heat transfer performance

- Increase of refrigerant mass flow rate
- Decrease of viscosity

^{*} Properties of saturated liquid at 70°C, calculated by REFPROP Ver.10

Improvement of compression performance

 Increase of adiabatic efficiency by decreasing pressure ratio

Source: K. lizuka, High efficiency stem supply systems using by heat pump cycle, JSRAE Journal 89, 2014.

Chemical Stability & Compatibility

Chemical Stability with PAG Oil in Metals

Sealed tube testing

Refrigerant: 60 g, Oil: 60 g, Coexistent metal plate: SS, Cu, Al (25×30×2mm)

Temperature: 150°C, Duration: 14 days

		R1224yd(Z)	R245fa
Refrigerant	Purity change [%]	99.8 \rightarrow 99.5 (Isomerization)	99.9 → 99.9
	Acidity [ppm]	< 0.2	< 0.2
	F [ppm]	< 0.2	< 0.2
	Cl [ppm]	< 0.2	< 0.2
Oil	Acid number [mgKOH/g]	0.05	0.03
	Color of oil (ASTM)	L0.5	L0.5
Metal	SS weight change [mg]	< 0.01	< 0.01
	Cu weight change [mg]	< 0.01	< 0.01
	Al weight change [mg]	< 0.01	< 0.01

There is no significant differences between R1224yd(Z) and R245fa.

Compatibility with O-ring

Sealed tube testing

Refrigerant: 80 g, Coexistent material: HNBR, EPDM

• Temperature: 150°C, Duration: 7 days

		R1224yd(Z)		R245fa	
Refrigerant	Purity change [%]	$99.8 \rightarrow 99.5$ (Isomerization)	$99.8 \rightarrow 99.5$ (Isomerization)	99.9 → 99.9	99.9 → 99.9
	Acidity [ppm]	< 0.2	< 0.2	< 0.2	< 0.2
	F [ppm]	< 0.2	<0.2	< 0.2	<0.2
	Cl [ppm]	< 0.2	< 0.2	< 0.2	< 0.2
O-ring	Туре	HNBR	EPDM	HNBR	EPDM
	Volume change [%]	9.6	3.6	14.4	2.5
	Weight change [%]	13.7	7.2	16.9	2.8

There is no significant differences between R1224yd(Z) and R245fa.

Compatibility with Motor Insulation Material

Sealed tube testing

Refrigerant: 80 g, Coexistent material: motor insulation

• Temperature: 150°C, Duration: 7 days

		R1224yd(Z)	R245fa
Refrigerant	Purity change [%]	99.8 \rightarrow 99.7 (Isomerization)	$99.9 \to 99.9$
	Acidity [ppm]	< 0.2	< 0.2
	F [ppm]	< 0.2	< 0.2
	Cl [ppm]	< 0.2	< 0.2
Motor insulation	Weight change [mg]	0.54	0.63

There is no significant differences between R1224yd(Z) and R245fa.

Conclusions

Conclusions

- R1224yd(Z)
 - Lower toxicity and very lower GWP compared to R245fa
- Energy performance
 - Thermodynamic prediction: similar COP but 8% lower heating capacity compared to R245fa
 - Actual performance: better than prediction (because of improvements of heat transfer and compression performances)
- Chemical stability and compatibility
 - PAG oil, O-ring, motor insulation material
 - No significant differences between R1224yd(Z) and R245fa
- Overall
 - R1224yd(Z) can be used as R245fa alternative for high temperature heat pump.

Thank you for your attention.

Takenobu KAIDA

Research Scientist

Heat Pump and Energy-saving Technology Group

Energy Innovation Center (ENIC)

2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196, JAPAN

kaida@criepi.denken.or.jp